
Reinforcement Learning using the CarRacing-v0
environment from OpenAI Gym

Nikhil Ramesh1 and Simmi Mourya1

University of Pennsylvania

Abstract. In this project we implement and evaluate various reinforcement learning meth-
ods to train the agent for OpenAI- Car Racing-v0 game environment. Our current method
explores Fully connected Deep Q-network and achieves an average reward of 210.92 for 10
evaluation steps. We train our best performing model which contains 70,475 paramaters
for 570 episodes. We also explored methods like vanilla DQNs, DQNs with dropout and
Proximal Policy Optimization. We added a small negative reward as a metric to penalize
the number of green pixels (aka green reward) in the frame. It helped us converge faster
than the case when we were not using the green reward. Link for the presentation video:
https://youtu.be/iv19T5s-oHc

1 Introduction

The Car Racing-vo environment task learns from pixels. Each state contains 9216 = 96x96 pixels.
For each frame there is a fixed reward of -0.1 and for every track tile visit there is reward of +1000/N
where N is the total number of tiles in the track in that particular frame. For example, if you have
finished in 732 frames, your reward is 1000 - 0.1*732 = 926.8 points. [3] An episode finishes when
the car visits all the tiles. We choose OpenAI Gym platform since it provides somewhat closer to
the real-world RL applications where actions are continuous and state spaces are generally high-
dimensional.

Fig. 1: Sample frame from the environment



2 Literature Review

[2] explores various versions of DQN methods such as Fully connected networks, vanilla CNNs and
pre-trained VGG-16 based Deep Q-networks. Findings show that using smaller neural networks for
RL based tasks is usually favored since larger networks become a bottleneck during creidt assign-
ment hence making the training slower. Apart from using CNNs [4] explores building generative
deep learning models of popular reinforcement learning environments. [6] harnesses the power of
Variational Autoencoders to train RL agents. A specific RL algorithm called Deep Deterministic
Policy Gradient (DDPG) learns the policy using VAE features as input. There are some advance-
ments reported in double and dueling deep Q-networks for solving similar RL based tasks. [1].

3 Experiments and Results

Problem Formulation: The action space consist of 3-tuples: (Steer, Gas, Break).
Value Ranges: Steer â [â1, 1], Gas â [0, 1], Break â [0, 1].
Environment reaction for these ranges:
Steer: From hard left turn to hard right turn
Gas: None to Full Power (Full forward)
Break: None to Completely stop the motion

3.1 Attempted Approaches:

1. DQN: We started with a vanilla Deep Q Network to train the agent. Our Action space:
Consists of four specific actions: left, right, forward, do nothing.
possible actions = [[1.0, 0.3, 0.0], [-1.0, 0.3, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 0.8]]

We take inspiration from [5] and design a small neural network which is slightly different than
the one mentioned in the paper. The idea was to fit the network on GPU and learn faster credit
assignment mechanism. The agent learns to drive the car from raw pixels (rendered screen by
Open-AI gym environment). We use a CNN to approximate the optimal Value-Action function as
represented below.

Q∗(s, a) = maxπ E
[
rt + γrt+1 + γ2rt+2 + . . . |st = s, at = a, π

]
Techniques used: 1. Replay memory: [5] mentions an excellent technique to address instability
which is presented by training a neural network for action-value updates. In our case, Replay memory
is a buffer of (States, Rewards, Actions and Next State). We use a moving buffer of size 10000 and
do the first network parameter optimization only after we occupy the first 10,000 steps and then
use a batch-size of 128 (or 64 different experiment) to randomly sample from the memory for a
training step. Having a replay memory helps randomizing over data hence removes correlations in
the stream of observations. This also smoothens out the changes in the data distribution.

2. Iterative update: An iterative update was used to adjust the Q values towards the target
values (updated periodically after every 10 episodes). This approach also reduces the correlations
with the target.



The network architecure for the DQN is displayed below:

The network architecture (Slightly updated version as compared to vanilla DQN, more deeper
and regularized by Dropout) for DQN is displayed below:

We trained these DQN variants for 1000 and 800 epochs respectively which took approx 9.5 and
8 hours respectively. We use RMSProp optimizer for training both of the models with a learning
rate of 1e-3. We also downsize the screen by a factor of 40 via torchvision resize function. We train
an epsilon greedy DQN with starting EPS = 0.9 and decay it by a factor of 200. Although there
were many positive scores in the intermediate episodes, none of the models showed a continuous
increasing trend of the scores. Some of the sample scores from various iterations are showed in the
figures Figure 4 and Figure 5 in Appendix. We observed that even after prolonged training, the
average reward over episodes was oscillating between high negative value and 50.



Possibles Reasons for failure:
1. Action space: We tried a different combinations of discrete action space.
2. We also noticed that just like GANs there are certain tricks of training RL models. Hyperparam-
eters like replay memory size, Batch size, No of episodes, target network update duration, action
space are play key role in success of training RL model. We also observed some minor bugs in our
training loop which was the main reason for slow training.

2. Proximal Policy Optimization or PPO
Here instead of using a discretized action space, we let the model learn the alpha and beta param-
eters of beta distribution [7]. We then use the torch.distributions.beta to generate action samples.
We implemented a slightly modified version of PPO without the surrogate loss. The motivation was
to simply diversify the action space keeping the training loop same.
Experimental details:
We tried using both normalized RGB and gray scale images to adjust the complexity of the model.
We added a small negative reward as a metric to penalize the number of green pixels (aka green
reward) in the frame. It helped us converge faster than the case when we were not using the green
reward. We use RMSProp optimizer for training the PPO model with a learning rate of 1e-3. This
model was relatively faster than our previously trained DQNs. We did not track results for PPO
after certain iterations because Fully Connected DQNs (as explained the section below) worked
faster and much better as compared to modified PPO. The Architecture used for this experiment
(PPO) is displayed below:

3. Q-Learning with Fully Connected Network
We were also working concurrently on another hypothesis which inspired us to think beyond raw



pixel data. We used features taken from patches around the car and patches around the track and
flatten them into a 1D vector which is fed to a fully connected neural net. This hypothesis revolves
around learning more accurate representation of the screen in lesser number of parameters.[2]

Experimental details:
For this implementation, after reading work by Luc Prieur, we decided to downsize our model com-
plexity and increase the importance of the features we fed into the model. Below, you can see our
model which consists of 5 fully-connected layers.

From here, we decided to focus on featurization of each screen to be compatible with an FCN
while maintaining crucial pieces of information from the image. We decided to take the patch of
image around the car and around the track (refer Figure 3), transformed them to a grayscale image
and flattened them into a 1D feature vector to be fed into the FCN. This was in order to learn the
surroundings of the car and the track surroundings when a good reward was achieved.

Then, we also decided to segment the action space differently; with this method, we took the
index of the highest Q-value and translated it to either a steering direction, forward thrust or stop
action. This turned out to give 11 actions (8 different steering, 1 forward, 1 brake) (refer Figure 2).
This was done in order to have a much more diverse action space with various steering angles (didn’t
seem to need other gas and brake rates). Each action was also randomly sampled during certain
steps using the parameter epsilon which was decayed just as it was in the DQN step.

From there, we wrote a normal training loop (which we ended after 570 episodes) with Q-updates
every environment step using the target net lagging behind by one step (as is custom in DQN). We



used the Adamax optimizer provided with Tensorflow because we saw that it works better than
Adam in certain cases especially in models with latent representations of images.

Below, you can see our network’s rewards over training iterations and running average over the
previous 100 runs.



Some critical functions for selecting action based on index and pre-processing of images are
given as follows:

Fig. 2: Action function for selecting action based on Q-index

Fig. 3: Function for extracting patch around the car

4 Appendix

4.1 Failure cases



Fig. 4: The training trend for the first few episodes: Vanilla DQN: more negative rewards per episode



Fig. 5: The training trend for few intermediate episodes: Vanilla DQN: more positive rewards per
episode



References

1. Juliani a., simple reinforcement learning with tensorflow, medium
2. Aldape, P., Sowell, S.: Reinforcement learning for a simple racing game
3. Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J., Zaremba, W.: Openai

gym (2016)
4. Ha, D., Schmidhuber, J.: World models. arXiv preprint arXiv:1803.10122 (2018)
5. Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller,

M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level control through deep reinforcement learning.
Nature 518(7540), 529 (2015)

6. Raffin, A., Sokolkov, R.: Learning to drive smoothly in minutes. https://github.com/araffin/

learning-to-drive-in-5-minutes/ (2019)
7. Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal policy optimization algorithms

(2017)

https://github.com/araffin/learning-to-drive-in-5-minutes/
https://github.com/araffin/learning-to-drive-in-5-minutes/

	Reinforcement Learning using the CarRacing-v0 environment from OpenAI Gym

