Reinforcement Learning using the CarRacing-v0
environment from OpenAl Gym

Nikhil Ramesh! and Simmi Mourya!

University of Pennsylvania

Abstract. In this project we implement and evaluate various reinforcement learning meth-
ods to train the agent for OpenAl- Car Racing-v0 game environment. Our current method
explores Fully connected Deep Q-network and achieves an average reward of 210.92 for 10
evaluation steps. We train our best performing model which contains 70,475 paramaters
for 570 episodes. We also explored methods like vanilla DQNs, DQNs with dropout and
Proximal Policy Optimization. We added a small negative reward as a metric to penalize
the number of green pixels (aka green reward) in the frame. It helped us converge faster
than the case when we were not using the green reward. Link for the presentation video:
https://youtu.be/iv19T5s-oHc

1 Introduction

The Car Racing-vo environment task learns from pixels. Each state contains 9216 = 96x96 pixels.
For each frame there is a fixed reward of -0.1 and for every track tile visit there is reward of +1000/N
where N is the total number of tiles in the track in that particular frame. For example, if you have
finished in 732 frames, your reward is 1000 - 0.1%732 = 926.8 points. [3] An episode finishes when
the car visits all the tiles. We choose OpenAl Gym platform since it provides somewhat closer to
the real-world RL applications where actions are continuous and state spaces are generally high-
dimensional.

Track generation: 1886..1365 -> 279-tiles track
retry to generate track (normal if there are not many of this messages)
Track generation: 1829..1295 -> 266-tiles track

pneO7

Fig. 1: Sample frame from the environment



2 Literature Review

[2] explores various versions of DQN methods such as Fully connected networks, vanilla CNNs and
pre-trained VGG-16 based Deep Q-networks. Findings show that using smaller neural networks for
RL based tasks is usually favored since larger networks become a bottleneck during creidt assign-
ment hence making the training slower. Apart from using CNNs [4] explores building generative
deep learning models of popular reinforcement learning environments. [6] harnesses the power of
Variational Autoencoders to train RL agents. A specific RL algorithm called Deep Deterministic
Policy Gradient (DDPG) learns the policy using VAE features as input. There are some advance-
ments reported in double and dueling deep Q-networks for solving similar RL based tasks. [I].

3 Experiments and Results

Problem Formulation: The action space consist of 3-tuples: (Steer, Gas, Break).
Value Ranges: Steer & [al, 1], Gas & [0, 1], Break & [0, 1].

Environment reaction for these ranges:

Steer: From hard left turn to hard right turn

Gas: None to Full Power (Full forward)

Break: None to Completely stop the motion

3.1 Attempted Approaches:

1. DQN: We started with a vanilla Deep Q Network to train the agent. QOur Action space:
Consists of four specific actions: left, right, forward, do nothing.
possible_actions = [[1.0, 0.3, 0.0], [-1.0, 0.3, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 0.8]]

We take inspiration from [5] and design a small neural network which is slightly different than
the one mentioned in the paper. The idea was to fit the network on GPU and learn faster credit
assignment mechanism. The agent learns to drive the car from raw pixels (rendered screen by
Open-Al gym environment). We use a CNN to approximate the optimal Value-Action function as
represented below.

Q*(s,a) =max, E [rt + YT + V2o + ... |8 = 8,0 = a, ﬂ

Techniques used: 1. Replay memory: [5] mentions an excellent technique to address instability
which is presented by training a neural network for action-value updates. In our case, Replay memory
is a buffer of (States, Rewards, Actions and Next State). We use a moving buffer of size 10000 and
do the first network parameter optimization only after we occupy the first 10,000 steps and then
use a batch-size of 128 (or 64 different experiment) to randomly sample from the memory for a
training step. Having a replay memory helps randomizing over data hence removes correlations in
the stream of observations. This also smoothens out the changes in the data distribution.

2. Iterative update: An iterative update was used to adjust the Q values towards the target
values (updated periodically after every 10 episodes). This approach also reduces the correlations
with the target.



The network architecure for the DQN is displayed below:
input torch.size([2, 3, 96, 96])

Layer (type) Output Shape Param #
conv2d-1 [-1, 16, 46, 46] 1,216
BatchNorm2d-2 [-1, 16, 46, 46] 32
Conv2d-3 [-1, 32, 21, 21] 12,832
BatchNorm2d-4 [-1, 32, 21, 21] 64
conv2d-5 [-1, 32, 9, 9] 25,632
BatchNorm2d-6 [-1, 32, 9, 9] 64
Linear-7 [-1, 4] 10,372

Total params: 50,212

Trainable params: 50,212
Non-trainable params: @

Input size (MB): @.11
Forward/backward pass size (MB): 0.77
Params size (MB): ©.19

Estimated Total Size (MB): 1.07

The network architecture (Slightly updated version as compared to vanilla DQN, more deeper
and regularized by Dropout) for DQN is displayed below:

Layer (type) Output Shape Param #
Conv2d-1 o O L § | 2,080
Conv2d-2 [-1, 64, 18, 10] 32,832

Dropout2d-3 [-1, 64, 18, 10] 2]
Conv2d-4 [-1, 64, 4, 4] 36,928
Linear-5 [-1, 512] 524,800
Linear-6 [-1, 5] 2,565

Total params: 599,205
Trainable params: 599,205
Non-trainable params: ©

Input size (MB): ©.04
Forward/backward pass size (MB): 0.24
Params size (MB): 2.29

Estimated Total Size (MB): 2.56

We trained these DQN variants for 1000 and 800 epochs respectively which took approx 9.5 and
8 hours respectively. We use RMSProp optimizer for training both of the models with a learning
rate of 1le-3. We also downsize the screen by a factor of 40 via torchvision resize function. We train
an epsilon greedy DQN with starting EPS = 0.9 and decay it by a factor of 200. Although there
were many positive scores in the intermediate episodes, none of the models showed a continuous
increasing trend of the scores. Some of the sample scores from various iterations are showed in the
figures [Figure 4] and [Figure 5] in Appendix. We observed that even after prolonged training, the
average reward over episodes was oscillating between high negative value and 50.




Possibles Reasons for failure:
1. Action space: We tried a different combinations of discrete action space.
2. We also noticed that just like GANs there are certain tricks of training RL models. Hyperparam-
eters like replay memory size, Batch size, No of episodes, target network update duration, action
space are play key role in success of training RL model. We also observed some minor bugs in our
training loop which was the main reason for slow training.

2. Proximal Policy Optimization or PPO
Here instead of using a discretized action space, we let the model learn the alpha and beta param-
eters of beta distribution [7]. We then use the torch.distributions.beta to generate action samples.
We implemented a slightly modified version of PPO without the surrogate loss. The motivation was
to simply diversify the action space keeping the training loop same.
Experimental details:
We tried using both normalized RGB and gray scale images to adjust the complexity of the model.
We added a small negative reward as a metric to penalize the number of green pixels (aka green
reward) in the frame. It helped us converge faster than the case when we were not using the green
reward. We use RMSProp optimizer for training the PPO model with a learning rate of le-3. This
model was relatively faster than our previously trained DQNs. We did not track results for PPO
after certain iterations because Fully Connected DQNs (as explained the section below) worked
faster and much better as compared to modified PPO. The Architecture used for this experiment
(PPO) is displayed below:

Layer (type) Output Shape Param #
conv2d-1 [-1, 8, 47, 47] 136
conv2d-2 [-1, 16, 23, 23] 1,168
Conv2d-3 [-1, 32, 11, 11] 4,640
Conv2d-4 [-1, 64, 5, 5] 18,496
conv2d-5 [-1, 128, 3, 2] 73,856
conv2d-6 [-1, 256, 1, 1] 295,168
Linear-7 [-1, 100] 25,700

RelLU-8 [-1, 100] )
Linear-9 [-1, 3] 303
Softplus-10 [-1, 3] 2
Linear-11 [-1, 3] 303
Softplus-12 [-1,

3] 0

Total params: 419,770

Trainable params: 419,770
Non-trainable params: @

Input size (MB): ©.04
Forward/backward pass size (MB): ©.25
Params size (MB): 1.60

Estimated Total Size (MB): 1.89

3. Q-Learning with Fully Connected Network
We were also working concurrently on another hypothesis which inspired us to think beyond raw



pixel data. We used features taken from patches around the car and patches around the track and

flatten them into a 1D vector which is fed to a fully connected neural net. This hypothesis revolves

around learning more accurate representation of the screen in lesser number of parameters.[2]
Experimental details:

For this implementation, after reading work by Luc Prieur, we decided to downsize our model com-

plexity and increase the importance of the features we fed into the model. Below, you can see our

model which consists of 5 fully-connected layers.

Model: "sequential_6"

Layer (type) Output Shape Param #
dense_26 (Demse)  (Neme, 256) 280
activation_26 (Activation) (None, 256) 2]
dense_27 (Dense) (None, 128) 32896
activation_27 (Activation) (None, 128) ]
dense_28 (Dense) (None, 64) 8256
activation_28 (Activation) (None, 64) 2]
dense_29 (Dense) (None, 32) 2080
activation_29 (Activation) (None, 32) ]
dense_3@ (Dense) (None, 11) 363
activation_3@ (Activation) (None, 11) 2]

Total params: 70,475
Trainable params: 70,475
Non-trainable params: ©

From here, we decided to focus on featurization of each screen to be compatible with an FCN
while maintaining crucial pieces of information from the image. We decided to take the patch of
image around the car and around the track (refer , transformed them to a grayscale image
and flattened them into a 1D feature vector to be fed into the FCN. This was in order to learn the
surroundings of the car and the track surroundings when a good reward was achieved.

Then, we also decided to segment the action space differently; with this method, we took the
index of the highest Q-value and translated it to either a steering direction, forward thrust or stop
action. This turned out to give 11 actions (8 different steering, 1 forward, 1 brake) (refer [Figure 2)).
This was done in order to have a much more diverse action space with various steering angles (didn’t
seem to need other gas and brake rates). Each action was also randomly sampled during certain
steps using the parameter epsilon which was decayed just as it was in the DQN step.

From there, we wrote a normal training loop (which we ended after 570 episodes) with Q-updates
every environment step using the target net lagging behind by one step (as is custom in DQN). We



used the Adamax optimizer provided with Tensorflow because we saw that it works better than
Adam in certain cases especially in models with latent representations of images.

Below, you can see our network’s rewards over training iterations and running average over the
previous 100 runs.

Rewards

700 A
600 -
500 1
400 ~

300 +

200 1

100 +

u_

=100 1

T T
0 100 200 300 400 500

Running Average

125 +

100 1

50_

25

_25 p

_50 p




Some critical functions for selecting action based on index and pre-processing of images are
given as follows:

def index_to_action(idx):
steering = 0.0
gas = 0.0
brake = 0.0

if idx <= 8:

idx -= 4

steering = float(idx) / 4
elif idx ==

idx -= 8

gas = float(idx) / 3
elif idx == 1@:

idx -= 9

brake = float(idx) / 2

return [steering, gas, brake]

Fig. 2: Action function for selecting action based on Q-index

def extract_track_car(screen):
track = screen[:84, 6:90]
track = cv2.cvtColor(track, cv2.COLOR_RGB2GRAY)
track = cv2.threshold(track, 126, 255, cv2.THRESH_BINARY)[1]
track = cv2.resize(track, (10, 10), interpolation = cv2.INTER_NEAREST).astype('float')/255

I3}
@
5

1

screen[66:78, 43:53]

car = cv2.cvtColor(car, cv2.COLOR_RGB2GRAY)

car = cv2.threshold(car, 80, 255, cv2.THRESH_BINARY)[1H

car = [car[:, 3].mean()/255, car[:, 4].mean()/255, car[:, 5].mean()/255, car[:, 6].mean()/255]

return track, car

Fig. 3: Function for extracting patch around the car

4 Appendix

4.1 Failure cases



37

Track generation: 1191..1493 -> 302-tiles track

Reward: -83.38870431893638 Average Reward: -50.616594507044624 Duration: 1600
38

Track generation: 1189..1490 -> 30@l1-tiles track

Reward: -79.99999999999967 Average Reward: -51.37001516071014 Duration: 1000

39

Track generation: 1046..1312 -> 266-tiles track

Reward: -77.35849056603756 Average Reward: -52.01972704584333 Duration: 1000

40

Track generation: 1270..1590 -> 320-tiles track

Reward: -71.78683385579957 Average Reward: -52.50185160218373 Duration: 1060

41

Track generation: 1099..1381 -> 282-tiles track

retry to generate track (normal if there are not many of this messages)

Track generation: 1290..1624 -> 334-tiles track

Reward: -75.9759759759759 Average Reward: -53.060759325369254 Duration: 1000

42

Track generation: 1245..1560 -> 315-tiles track

Reward: -80.89171974522257 Average Reward: -53.70799096304026 Duration: 1000

43

Track generation: 1221..1530 -> 3@9-tiles track

Reward: -74.02597402597408 Average Reward: -54.16976330537966 Duration: 1060

44

Track generation: 1181..14808 -> 299-tiles track

Reward: -59.73154362416185 Average Reward: -54.29335842357482 Duration: 10600

45

Track generation: 1027..1294 -> 267-tiles track

Reward: -58.646616541353985 Average Reward: -54.3879944696135 Duration: 1060

46

Track generation: 1032..1294 -> 262-tiles track

Reward: -54.142911877395086 Average Reward: -54.38277994637481 Duration: 733

47

Track generation: 1165..1461 -> 296-tiles track

Reward: -55.93226338983101 Average Reward: -54.41505960144681 Duration: 1060

48

Track generation: 1077..1350 -> 273-tiles track

Reward: -©.7352941176470349 Average Reward: -53.31955418341008 Duration: 1000
49

Track generation: 1235..1548 -> 313-tiles track

Reward: -83.97435897435844 Average Reward: -53.932650279229044 Duration: 1000
50

Track generation: 1112..1394 -> 282-tiles track

Reward: -82.206406569394973 Average Reward: -54.487037640302006 Duration: 1000
51

Track generation: 1145..1435 -> 296-tiles track

Reward: -79.23875432525924 Average Reward: -54.963032191935795 Duration: 1000
52

Track generation: 1156..1457 -> 30@l-tiles track

Reward: -43.333333333334075 Average Reward: -54.74360391158482 Duration: 1600

Fig. 4: The training trend for the first few episodes: Vanilla DQN: more negative rewards per episode



Track generation: 1236..1549 -> 313-tiles track

Reward: 44.23076923076847 Average Reward: -28.863778377014285 Duration: 1000
114

Track generation: 1102,.1382 -> 280-tiles track

Reward: 16.063440860214634 Average Reward: -28.47310690538621 Duration: 377
115

Track generation: 1244..1559 -> 315-tiles track

Reward: -5.052866242038206 Average Reward: -28.271208278978037 Duration: 369
116

Track generation: 1677..1350 -> 273-tiles track

Reward: 51.11176470588202 Average Reward: -27.59272133038949 Duration: 468
117

Track generation: 1148..1439 -> 291-tiles track

Reward: 33.66206896551677 Average Reward: -27.0736129380513 Duration: 422
118

Track generation: 1128..1414 -> 286-tiles track

Reward: 35.65438596491259 Average Reward: -26.546486896849924 Duration: 661
119

Track generation: 1220..1529 -> 309-tiles track

Reward: 20.12987012987073 Average Reward: -26.157517254960585 Duration: 1000
120

Track generation: 1176..1475 -> 299-tiles track

retry to generate track (normal if there are not many of this messages)

Track generation: 1315..1648 -> 333-tiles track

Reward: 5.421686746988431 Average Reward: -25.896532097919682 Duration: 1000
121

Track generation: 1183..1483 -> 300-tiles track

Reward: 29.745484949832253 Average Reward: -25.440449990970897 Duration: 639
122

Track generation: 1043..1312 -> 269-tiles track

Reward: 21.101492537312957 Average Reward: -25.062060214318183 Duration: 386
123

Track generation: 1175..1473 -> 298-tiles track

Reward: -46.127946127946636 Average Reward: -25.231946391640992 Duration: 1000
124

Track generation: 1179..1478 -> 299-tiles track

Reward: 195.30201342282322 Average Reward: -23.46767471253008 Duration: 1000
125

Track generation: 1267..1588 -> 321-tiles track

Reward: 75.00000000000335 Average Reward: -22.686185230684575 Duration: 1000
126

Track generation: 1184..1484 -> 300-tiles track

Reward: 67.22408026755843 Average Reward: -21.97823038424172 Duration: 1606
127

Track generation: 1153..1446 -> 293-tiles track

Reward: 2.7397260273965762 Average Reward: -21.785121349775796 Duration: 1000
128

Track generation: 1111..1397 -> 286-tiles track

Reward: 66.86842105263268 Average Reward: -21.09788458696643 Duration: 805

Fig. 5: The training trend for few intermediate episodes: Vanilla DQN: more positive rewards per
episode



References

1. Juliani a., simple reinforcement learning with tensorflow, medium

2. Aldape, P., Sowell, S.: Reinforcement learning for a simple racing game

3. Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J., Zaremba, W.: Openai
gym (2016)

4. Ha, D., Schmidhuber, J.: World models. arXiv preprint arXiv:1803.10122 (2018)

5. Mmnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller,
M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level control through deep reinforcement learning.
Nature 518(7540), 529 (2015)

6. Raffin, A., Sokolkov, R.: Learning to drive smoothly in minutes. https://github.com/araffin/
learning-to-drive-in-5-minutes/| (2019)

7. Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal policy optimization algorithms
(2017)


https://github.com/araffin/learning-to-drive-in-5-minutes/
https://github.com/araffin/learning-to-drive-in-5-minutes/

	Reinforcement Learning using the CarRacing-v0 environment from OpenAI Gym

