
Inferring Cuisines from Cooking Recipe
Descriptions using Language Processing

Simmi Mourya (simmim@seas.upenn.edu)
Mohitrajhu Lingan Kumaraian (moji@seas.upenn.edu)

Rahul Ramesh (rahulram@seas.upenn.edu)

Abstract
In this project, we aim to predict the cuisine of
the dish based on the constituents of this dish.
The data for the project is from Kaggle (What’s
cooking? [7]) and consists of ingredients (in text
form) and the corresponding cuisine. We imple-
ment natural language processing techniques to
effectively vectorize the words for performing
downstream tasks like classification. We find that
TF-IDF with RBF-kernel based SVM yields the
higher classification accuracy. We compare how
different input representations, classifiers and pre-
processing techniques affect the performance of
the task. We also perform unsupervised learning
and identify similarities and differences of differ-
ent cuisines and visualize the different cuisines in
2D embedding space. Our work is summarized
in 4 Jupyter notebooks (Visualization, Supervised
learning, Unsupervised learning and Final Clean
Notebook).

1. Motivation
The dataset consists of ingredients and the corresponding
cuisine and the aim is to classify an unlabelled recipe into
one of the 20 given cuisines. The challenge arises from the
fact that the input features are words and cannot be used with
a model in the absence of data processing. This requires
understanding different representation of words in a fixed
dimensional sub-space (like Bag of words or Word2vec).
After forming a useful representation for the recipe, the task
then devolves to the standard classification problem which
can be tackled using popular models like Naive Bayes, Lo-
gistic regression, Decision Trees, Random Forests, Gradient
Boosted Trees, SVMs and Neural Networks. Since cer-
tain cuisines share a significant number of ingredients, we
also cluster different recipes with/without dimensionality
reduction. This can help with data understanding and visu-
alization and uncover potential patterns in the dataset. The
primary purpose of this project is to understand and analyze

Figure 1. Sample data

a dataset but one can potentially use the built classifier for a
simple application that categorizes and catalogues a differ-
ent recipes. The dataset is interesting because we have the
opportunity to explore data visualization techniques, super-
vised learning, language processing, unsupervised learning
and dimensionality reduction.

2. Related Work
Kaggle kernels [4] are a great source of python notebooks
that highlight previous solutions to the problem. Kernels
convert the ingredients into a vector by using a bag of words
model to present the ingredients as a collection of indicator
features. Additionally, TF-IDF was used to scale the im-
portance of infrequently occurring words. However, the
meaning of words is grounded in our world and works
have studied the notion of ”Symbol grounding”. For ex-
ample, Salt and Pepper are fairly similar ingredients when
compared to fruits or vegetables. Hence one can poten-
tially leverage the knowledge present in external datasets to
build better representations. Hence, we use techniques like
Word2Vec [8] to work with better word representations.

Some kernels build some interesting visualizations which
understand the distributions of the classes, or the correlation
between the different cuisines (kernel example: Cooking
is Chemistry [1]). Other kernels have focused on under-
standing the vocabulary What are Ingredients [2] and re-

https://www.kaggle.com/c/whats-cooking-kernels-only/notebooks
https://www.kaggle.com/c/whats-cooking-kernels-only/notebooks
https://github.com/rahul13ramesh/cis520-dataset/blob/master/Data_Analysis_CIS520.ipynb
https://github.com/rahul13ramesh/cis520-dataset/blob/master/ModelTraining_CIS520.ipynb
https://github.com/rahul13ramesh/cis520-dataset/blob/master/ModelTraining_CIS520.ipynb
https://github.com/rahul13ramesh/cis520-dataset/blob/master/Unsupervised_Learning.ipynb
https://github.com/rahul13ramesh/cis520-dataset/blob/master/Clean_CIS520_Project.ipynb
https://github.com/rahul13ramesh/cis520-dataset/blob/master/Clean_CIS520_Project.ipynb
https://www.kaggle.com/josephgpinto/cooking-is-chemistry-really 
https://www.kaggle.com/josephgpinto/cooking-is-chemistry-really 
https://www.kaggle.com/rejasupotaro/what-are-ingredients


CIS520: Course Project

Figure 2. Class distribution visualized through a Waffle plot. The
number of squares corresponds to the proportion of the class in the
entire dataset.

veals some interesting challenges. Some of them include
the presence of accented characters, hyphens, misspellings,
etc.. . The most popular baseline by far is SVM, with TF-
IDF [3, 5]. We also observe the highest accuracy with a
Gaussian-kernel SVM. The baseline used minimal feature
engineering in order to achieve competitive performance.
Another simple yet popular model is a simple logistic re-
gression classifier [6].

Our work attempts to comprehensively analyze and compare
different available classifiers. We also use Word2Vec and
TF-IDF based models to build better feature representations.
Some kernels use very simple versions of word embedding.
We also experiment with additional features like number of
ingredients, indicator variable for special characters, number
of characters. These are a few features that have not been
considered in other python notebooks to the best of our
knowledge. Finally, the focus of most notebooks has been
on the classification task which is unsurprising considering
that this is a kaggle contest. We however hope to explore
different clustering techniques with an aim to unearth some
interesting patterns in the data.

3. Dataset
In this project we are using the dataset provided by Yummly
as a part of their kaggle contest ”What’s cooking?” [7]. This
dataset consists of the recipes(features) in text form and the
cuisines for each recipes(as in Figure 1). Since the features
are in textual form, the major challenge would be to form
a mapping from the vocabulary space to the embedding

Figure 3. Word cloud of the vocabulary before pre-processing

Figure 4. Word cloud for Indian cuisine

Figure 5. Word cloud for Italian cuisine

space. The sections below run through some interesting
visualizations and patterns.

3.1. Initial Data statistics and visualization

The training dataset initially consists of 39774 datapoints
falling under 20 different recipes. The distribution of data-
points into the cuisines is shown with the help of a waffle
plot(Figure 2). The initial vocabulary size is 3589. We
evaluate how the accuracy of the model varies if we include
other n-grams. The initial vocabulary is represented pictori-
ally in Figure 3. We see that some examples of frequently
occurring ingredients over all cuisines are olive oil and black
pepper.

Although these ingredients are more commonly found in
many cuisines, the key ingredients in a recipe vary from
cuisine to cuisine (as shown in Figure 4, Figure 5, Figure
6). We also see from these figures that Indian recipes have a
number of spices while the Italian cuisine is dominated by
ingredients like cheese and olive oil.

We also look at the number of ingredients in each recipe.
We visualize this using the violin-plot (similar to box-plot)
in Figure 6. The plots indicate that the Indian and Jamaican
cuisines have a larger number of ingredients and the Brazil-
ian cuisine has a number of recipes with a small number of
ingredients.

https://www.kaggle.com/c/whats-cooking-kernels-only/notebooks
fig:dat
fig:waf
fig:wc_pre
fig:wc_ind
fig:wc_it
fig:wc_mex
fig:wc_mex


CIS520: Course Project

Figure 6. Violin plot, representing the distribution of ingredients against the cuisine

Figure 7. Distribution of the occurrences of words. (the plot is
truncated at 50 (however there are quite a few words that occur
over 5000 times

Finally, we want to understand the frequency of occurrence
of words. Figure 7 plots the number of times a word occurs
n-times. The plot indicates that a large number of words
occur only once. Such words are not very useful since one
cannot train models that generalize well with just 1 sample
of the word. More visualizations are present in the notebook
(Visualization)

3.2. Data pre-processing

We perform the following pre-processing steps on our data
before we vectorize them. They are as follows:

• Convert all upper case characters to lower case.

• Remove all data points with 1 or 2 ingredients.

• Remove words like lb., oz., inch (they are found in
some cuisines).

• Remove special characters like [pound symbol], TM, (,
), R©, ., -, %,, &.

• Remove accented characters and replace them with an
ascii counter-part.

• Remove copyright and trademark symbols.

• Remove words that occurs in less x% of the data (we
used x=0.01).

• Change unicode symbol of apostrophe with ’ .

• Remove all numbers.

The pre-processing leaves the dataset with only alphabets
and spaces as characters. The total number of datapoints is
39559. Since we remove these characters, we construct an
additional set of features to see if they are somehow relevant
to the task. The features are as follows:

• Binary indicator for accented characters

• Binary indicator for special characters like TM, R©
• Indicator variable for other symbols

• Indicator variable for presence of numbers, % or units
of measurement

• Number of ingredients in recipe

• Number of characters in the recipe

4. Problem Formulation
Classification task: The main focus is on the classifica-
tion task. The first step involves converting the input ingre-
dients, into a vector that can be fed as input into a classifier.
Simple transformations like one-hot vectors/bag of words
are used to understand the difficulty of the problem. We
consequently use Word2Vec and TF-IDF and also try other
techniques like stemming and lemmatization.

With a fixed dimensional representation of every data point,
we use the cross-entropy loss to train the multi-class clas-
sifier. The evaluation is done using K-fold cross-validation
or using a held out test set (depending on the time required
to train the model). For smaller models, we prefer the more
robust cross-validation setup. We use accuracy as the eval-
uation metric. But, we also used confusion matrix as our
additional metric to get an idea of how the classes are get-
ting classified and if we could use any other model which
could classify these similar classes.(eg. as we will see in the
experiments part).

https://github.com/rahul13ramesh/cis520-dataset/blob/master/Data_Analysis_CIS520.ipynb


CIS520: Course Project

Note that there are a myriad of choices/hyper-parameters
and pre-processing techniques to choose from. We attempt
to empirically find some of our choices but do not per-
form fine-grained hyper-parameter grid-searches due to a
constraint on time. For example, we explore undersam-
pling/oversampling data points based on the proportion in
which they occur in the dataset. Samples from the minority
classes are oversampled while those in the majority class
are undersampled. Samples from the majority class will oth-
erwise dominate the loss and the classifier will build a bias
towards these classes. We try other such modifications and
validate our choices based on the training accuracy. After
training a classifier, we also look at the incorrectly predicted
samples to understand which type of data points are being
incorrectly classified.

Unsupervised learning: The representation built for the
classifier can also be used to build clusters. Note that clus-
tering is difficult in high-dimensional space and hence di-
mensionality reduction using PCA/TSNE might be useful.
We also train an LDA model to understand the topics of
different ingredients. We gain an understanding of different
cuisines and their relationship through this exercise.

5. Methods
In this section, we outline the various models and feature
generation techniques that we evaluate. We describe our
baselines for this task. Our code is written in Python and
most machine learning models use the Scikit-learn [10]
package.

5.1. Building Feature Representations

We perform the pre-processing steps described in an earlier
section. We also empirically evaluate different tokenization
schemes (n-grams), stemming and lemmatization. We see
that considering only 1-grams works best and don’t observer
any benefit in using either stemming or lemmatization (us-
ing Wordnet [9]). We also discard words that don’t occur
frequently in the dataset and consider different thresholds
in the same. The reasoning for this is to prevent the model
from overfitting to infrequently occurring words, resulting
is lower generalization. Most of these choices are justified
using an empirical evaluation of different choices. Now
every recipe is represented as an un-ordered list of words.

The simplest representation we consider is the Bag-of-words
representation. This feature representation counts the num-
ber of occurrences of a word and populates a vector which is
the size of the vocabulary. The size of the vocabulary varies
with the type of pre-processing and is around 1000 to 3000.
Since certain ingredients like salt and oil occur frequently,
it is beneficial to use a inverse document frequency based
weighting. We hence consider the TF-IDF representation

which is our best performing representation. Both these
representations assume that the text is un-ordered which is
the case for this problem. We experiment with multiple de-
sign choices like using log for inverse document frequency,
smoothing the counts and using binary indicators instead of
token counts.

Finally we consider word and document embedding. We
don’t train a Word2vec [8] from scratch on the given data
since the dataset is small in size and most tokens do not
occur too many times. Hence we use Google’s pretrained
Word2vec representation (download link), which generates
a 300 dimensional vector representation for each word. We
represent each recipe as the average of word2vec representa-
tions of all the comprising words. We observe a degradation
in performance when using word2vec and we discuss poten-
tial reasons in the conclusion section. We notice that words
like: [’aleppo’, ’tubetti’, ’hellmanns’, ’kidnei’] do not have
corresponding Word2vec representations even though some
of them maybe critical to identifying the cuisine.

5.2. Baseline

The simplest model we consider is a random classifier. Since
this is an imbalanced classification problem, we consider
another baseline of solely predicting the majority class. We
then move into slightly more complex models

Another model is the bag of words representation followed
by a Naive-Bayes classifier. This model builds a conditional
probability estimate for each class (and a prior for each
class) and uses the independence assumption to calculate
p(label|data). Such an assumption is not necessarily valid
in our cases. We also consider logistic regression and de-
cision trees as other baselines. Since logistic regression
executes quickly also achieves reasonable accuracy, we use
this model to evaluate other modelling choices like stem-
ming, Word2Vec etc.. (this is a heuristic decision).

5.3. More models and unbalanced data

Since the data is potentially unbalanced, we can use meth-
ods like under-sampling/oversampling to make sure that a
particular class does not dominate the loss. Although this is
a good choice when you have a really large dataset, exclud-
ing the data potentially leads to loss of information that is
valuable, leading to poor generalization of the test data. We
also consider more complex models like Random Forests,
Ada-boost, Gradient boosted trees, XGBoost, SVMs with
different kernels and Neural Networks. For the multi-class
classification problem we primarily use classification accu-
racy as the metric of evaluation but we additionally analyze
the confusion matrix to mitigate class imbalances. We eval-
uate on a held-out test set and for some models (which run
fairly quickly), we use K-fold cross-validation to determine
the best performing model.

https://code.google.com/archive/p/word2vec/


CIS520: Course Project

5.4. Unsupervised learning

We consider the TF-IDF representation with the hyper-
parameter setting that yields the best classification perfor-
mance. We perform K-means on this representation. Note
that clustering is difficult in high-dimensional space and
hence dimensionality reduction using PCA/TSNE is used to
reduce data to 2 dimensions. This is easier to visualize. We
also form cuisine representations by averaging the PCA/T-
SNE representations of the corresponding recipes. We also
look at the LDA model to understand the various topics that
generate the recipes.

5.5. Tools for Implementation

The implementations are solely in python where we pri-
marily utilize scikit-learn [10] for training our models. We
make use of pandas, seaborn and matplotlib in the data anal-
ysis and visualization. The word clouds are plotted using
https://github.com/amueller/word_cloud.

6. Experiments
6.1. Performance metrics

The experiments primarily use accuracy as the evaluation
metric. We also report the confusion matrices in the jupyter
notebook. We evaluate on a held-out test set and use K-fold
cross-validation for models that run quickly. We do not use
F1-score, precision or recall because since the confusion
matrices do not indicate predictions biased to any one class.
Furthermore, ROC and F1-scores are not typically utilized
in multi-class classification problem with many classes.

6.2. Baseline model

The simple majority class classifier is used as the baseline
model. This model yields a accuracy of 19.7%. We also
evaluate a model that predicts random labels and observe an
accuracy of 5.0077% (approximately 1

20 )

6.3. Feature Generation

In this section, we evaluate different feature generation tech-
niques. Since the logistic regression model outperforms
other simple models, we use it as a reference model. Conse-
quently occurring tables are evaluated with logistic regres-
sion using the accuracy metric. Also, the reported accuracies
are all on a held-out test set and are hence maybe slightly
inaccurate.

1. Effect of different feature generation techniques

feature generation model Accuracy(%)
Bag of words 75.86

TF-IDF 76.91
word2vec 75.36

TF-IDF+word2vec 76.81

Table 1. feature representation models vs Accuracy

2. Varying n-grams for each feature

n-gram Accuracy(%)
1-gram 77.59
2-gram 77.03
3-gram 76.4

Table 2. Model with different n-grams

3. Variation with smoothing

Effect of smoothing Accuracy(%)
no smoothing 76.91

smoothing factor=1 76.91

Table 3. Effect of smoothing

4. Effect of sublinear function (logarithmic) on in-
verse document frequency

IDF manipulation Accuracy(%)
Without log IDF 76.91
Using log IDF 76.72

Table 4. IDF manipulation

5. Effect of dropping rarely frequent words with TF-
IDF on accuracy

Word droppping threshold Accuracy(%)
0.000 75.69
0.0001 76.20
0.003 74.99
0.01 70.91

Table 5. Frequency threshold vs Accuracy

6. Effect of Stemming and lemmatization

Process Accuracy(%)
Stemming porter 76.91

Stemming Lancaster 76.22
Lemmatization 77.36

Table 6. Base-form extraction process vs Accuracy

https://github.com/amueller/word_cloud


CIS520: Course Project

Model Train Accuracy (%) Test Accuracy (%)
Random Classifier - 5.008
Majority Classifier - 19.7

Ada Boost 45.36 43.79
Decision Tree 99.98 62.00
Naive bayes 69.77 67.69

Gradient Boosting 97 74.41
Random Forest 99.99 74.97

MLP 98.34 75.78
Extra Trees 99.98 77.45

Logistic 82.07 78.41
XGBoost 94.96 78.59

SVM 99.7 80.24

Table 7. Accuracy of various models

6.4. Supervised Learning: A Summary of Different
Classifiers

We experiment with Gradient Boosting Classifier, AdaBoost
Classifier, Random Forest classifier, Extra tress classifier,
XGBoost Classifier and a simple MLP classifier with 3
hidden layers of sizes 500, 500 and 300 respectively. For
a detailed description of tuned hyperparamter values of
the experiments mentioned above, refer to the Gradient
Boosting section of the Supervised learning Colab notebook.
Table Table 7 reports the training and test accuracies for the
aforementioned experiments.

6.5. Supervised Learning: Decision Tree Classifier

We also experiment with a few decision tree classifiers, train
and test accuracies for the experiments are reported in Table
Table 11.

Split Strategy Train Accuracy Test Accuracy
Best (max depth=5) 37.99 38.40

Best (max depth=15, min
samples split=100) 55.90 53.03

Best 99.97 60.60
Best (min samples split=20) 84.524 61.04

Random 99.98 62

Table 8. Overall accuracy of variants of Decision Tree Classifier
trained via 5 fold cross validation. The strategy used to choose the
split at each node. Supported strategies are “best” to choose the
best split and “random” to choose the best random split.

6.6. Logistic Regression

After training a plethora of tree based models, we move
ahead with Logistic Regression models due to its superior
performance. We experiment with a combination of fea-
tures and employ Logistic Regression classifier under var-
ious parameter setting. We start with a simple Logistic
Regression classifier with bag-of-words representation. The
bag-of-words is done on the pre-processed text. We then
try different variants of TF-IDF and do a coarse grid-search

over some hyper-parameters. The results for Logistic Re-
gression Classifier are logged in Table 1, Table 2, Table 3,
Table 4, Table 5 and Table 6. The best accuracy on the
Logistic Regression classifier is reported in Table 9. This
is obtained when all the best models for feature generation
are used, which can be inferred from the above section on
feature generation models as TF-IDF on 1-gram generated
feature words with/without smoothing dropping out words
with frequency less than 0.0001 and lemmatizing the words.

Model Train Accuracy Test Accuracy
Logistic Regression 82.07 78.41

Table 9. Accuracy of best Logistic Regression classifier with the
following parameters: Without log IDF, smoothing factor =1, word
dropping threshold =0.0001

The analysis is furthered by plotting confusion matrices
to see which classes are have high True Positive rate.
It helped us to investigate which samples/classes are
performing poorly and directed us to use class weights
for a more balanced classification. Figure 8 represents
the Confusion Matrix for the best Logistic Regression
experiment. Figure 9 represents the Multi-class extension of
Receiver Operator Characteristic graph for the same. From
the graph we can observe that ’class 17’ (’Southern-US’
cuisine) has slightly low area under the curve as compared
to ’class 3’ (’Chinese’ cuisine) which can be verified from
the Confusion matrix as well, since the model makes
more errors which result in higher number of false negatives.

Figure 8. Confusion Matrix: Logistic Regression

Area under ROC for the multi-class problem: The func-
tion sklearn.metrics.roc auc score is used to compute the
score for multi-class classification. The multi-class One-vs-

https://github.com/rahul13ramesh/cis520-dataset/blob/master/ModelTraining_CIS520.ipynb


CIS520: Course Project

One scheme compares every unique pairwise combination
of classes. [10] Here, we report a prevalence-weighted aver-
age and a macro average to further estimate the robustness
of the models. Macro-average computes the metric inde-
pendently for each class and then averages them, therefore
weighs them equally. However, a Micro-average collects
the class-wise contributions (hence taking care of inherent
class-imbalance, if any) and then computes the average. The
micro average adequately considers the class imbalance and
adjusts the overall precision/recall average accordingly. Ta-
ble 10 reports the Macro-average and Micro-average scores
for Logistic Regression classifier.

Figure 9. Receiver Operator Characteristic Curve per class: Logis-
tic Regression

Metric Score
Macro 0.9733

Micro (weighted by prevalence) 0.975452

Table 10. One-vs-One ROC AUC scores for Logistic Regression

6.7. Support Vector Machine

SVMs are conventionally used for binary class classification.
For multi-class classification via SVMs, one can either use
one-versus-all (usually referred to as OVR or one-versus-
rest) or one-versus-one (usually referred to as OVO). The
common practice while using OVR method is to build C
(where C is the number of classes present in the dataset)
OVR classifiers and choose the classifier which chooses
the test data with maximum margin. While performing
OVO classification one builds a set C(C−1)

2 of one-vs-one
classifiers and choose the class that is selected by a majority
of the classifiers.

Mode and Kernel Train Accuracy Test Accuracy
LinearSVC and L2 penalty 86.03 78.66
LinearSVC and L2 penalty,

multi-class=’crammer singer’ 84.25 79.32

LinearSVC and L1 penalty 83.63 79.64
OVO (class balanced) (RBF) 99.99 80.36

OVR (RBF) 99.97 80.24
OVR (class balanced) (RBF) 99.98 80.18

Table 11. Overall accuracy on variants of Support vector machines.
The modes OVO and OVR are denoted along with the type of
kernel used to fit the data.

The Crammer-singer objective in Table 11 uses a joint ob-
jective to train a multi-class classification problem.

Figure 10 represents the Confusion Matrix for the best SVM
experiment.Figure 11 represents the Multi-class extension
of Receiver Operator Characteristic graph for the same.

Figure 10. Confusion Matrix: SVM

Figure 11. Receiver Operator Characteristic Curve per class: SVM

Table 12 reports the Macro-average and Micro-average



CIS520: Course Project

scores for SVM classifier. We observe that the Micro-
average score is higher for our best SVM as compared to our
best Logistic Regression classifier. The Final Clean Note-
book linked in the abstract contains our implementation
code and visualization for the presented model.

Metric Score
Macro 0.97723

Micro (weighted by prevalence) 0.980532

Table 12. One-vs-One ROC AUC scores for Logistic Regression

6.8. Unsupervised learning

Topic Common Ingredients
0 pepper oil salt fresh olive ground garlic lemon

cloves parsley red wine tomatoes onions extra virgin
1 sugar flour butter salt all purpose eggs milk large

baking water cream powder vanilla unsalted egg
brown yolks buttermilk whole orange juice

2 cheese pepper chicken cream garlic salt tomatoes
shredded onions Parmesan oil seasoning cheddar

beans chopped fresh olive bell mozzarella
3 sauce oil soy rice onions sesame chicken water

ginger salt green vinegar fresh white red
vegetable pork carrots wine

4 pepper cilantro ground oil juice powder chopped
cumin onion green red chicken tomatoes chili

leaves black bell cloves vegetable coconut

Table 13. LDA topic against the highest probability words from
that topic. Topic 1 looks like ingredients from a Salad while topic 2
has dairy-based ingredients. Topic 3 consists of ingredients which
are predominantly found in eastern cuisines.

The experiments on unsupervised learning are present in this
notebook (notebook). We use the TF-IDF representation
using the following parameters in Scikit-learn.

1 TfidfVectorizer(input="content", analyzer="
word", ngram_range=(1, 1), min_df
=0.0001, binary=False, use_idf=True,
smooth_idf=True, sublinear_tf=False)

Listing 1. Python example

We run k-means on the above setting with K = 5 which we
determine by looking at when the reconstruction loss satu-
rates. We operate in a 1983 dimensional space. In Figure
13, we observe that the cuisines cluster into different groups.
For example, cluster 1 has Chinese, Japanese, Korean, Thai
and Vietnamese.

In order to obtain better visualizations, we perform both
TSNE and PCA and reduce all data points to two dimen-

sions. We then represent every cuisine as the average of
all embeddings of recipes that belong to that cuisine. We
obtain interesting results where similar cuisines like Irish,
British, Russian and Southern-US are grouped together and
Vietnamese, Japanese, Chinese and Thai are also nearby in
embedding space. (all plots present in Figure 12). TSNE
yields better embeddings since the algorithm explicitly en-
sures that local distances are preserved in lower dimensional
space.

Finally, we also perform LDA with 5 topics (heuristic
choice). This scenario is perfectly suited for LDA since
the order of the ingredients is not critical to the recipe (LDA
doesn’t consider the ordering when generating a document).
We see that Topic 4 is mostly comprised of spices while
Topic 1 consists of dairy-based ingredients. Table 13 sum-
marizes some high probability words from each topic.

7. Conclusion and Discussion
We explore the What’s Cooking dataset from Kaggle and
achieve an accuracy of 80.36% using the SVM model which
is our best performing model (Figure 11, and Table 11). We
noticed that SVMs, Neural networks and logistic regression
outperform tree based classifiers. This is not particularly
surprising since SVMs and neural networks operate better
on homogeneous continuous spaced inputs. The best repre-
sentation is TF-IDF (with hyper-parameters derived from
subsection 6.2). A fairly powerful XGBoost classifier is the
next best classifier.

Stemming or lemmatization to improve on TF-IDF based
representations with simple pre-processing. This could be
because the unprocessed tokens have some patterns that
correlate with the cuisine. Surprisingly Word2vec also per-
forms fairly poorly. We hypothesize that certain key-words
don’t have Word2vec representations (397 words don’t have
representations) and hence these potentially discriminating
words are not present in the representation. Furthermore,
the Word2vec representation of all ingredients are fairly
similar (since Word2vec is trained on all words) and hence
the classifier may have less discriminatory power.

One would expect a neural network to outperform an SVM
since it is a more powerful model. However, we see that
the SVM does better. We believe this could be due to two
reasons. The optimization techniques of SVM are superior
to that of neural networks in the low data regime. Secondly,
we do not use regularization in the form of weight decay/-
dropout or batch-normalization (batch-norm has implicit
regularization properties). We believe that some fine tuning
with neural networks should yield better accuracies. We
see that different TF-IDF hyper-parameters do not signifi-
cantly affect the performance. We believe that smoothing,
using log-idf, does not significantly affect representations

https://github.com/rahul13ramesh/cis520-dataset/blob/master/Unsupervised_Learning.ipynb


CIS520: Course Project

Figure 12. PCA (left) and TSNE (right)

Figure 13. K-means for k=5. The colour intensity represents the
number of data points in that particular bin.

for small datasets. However, the choice for the document
frequency threshold has some effect on generalization.

For unsupervised learning, we see that the cuisines are
neatly grouped into clusters and align with what our in-
tuition with suggest. This suggests that the classification
among these family of cuisines might be difficult since some

of the cuisines are fairly similar to one another. This also
suggests a problem with that data where some cuisines could
potentially belong to two classes.

To further improve our performance, a neural network based
approach with TF-IDF and Word2vec with effective regu-
larization maybe a good option. We also believe that the
dataset has a number of errors (almondmilk as one word,
some ingredients are mis-spelled) and hence the Bayes-error
of this task maybe fairly high (minimum achievable error).
A cleaner dataset might by more useful for generating bet-
ter representations. A more fine-grained hyper-parameter
search will also improve performance since we perform a
coarse hyper-parameter search due to a restriction on time
and compute. We also analyzed the mis-classified ingre-
dients and found that the number of ingredients in mis-
classified samples is far higher that the average data point.
We also noticed that multiple southern-us cuisine are mis-
classified since the range of recipes of this cuisine is fairly
diverse and this cuisines typically has a large number of
ingredients.

References
[1] Kaggle Kernel: Cooking is Chemistry Really. https:

https://www.kaggle.com/josephgpinto/cooking-is-chemistry-really
https://www.kaggle.com/josephgpinto/cooking-is-chemistry-really
https://www.kaggle.com/josephgpinto/cooking-is-chemistry-really


CIS520: Course Project

//www.kaggle.com/josephgpinto/
cooking-is-chemistry-really, 2018.

[2] Kaggle Kernel: What are Ingredients? https:
//www.kaggle.com/rejasupotaro/
what-are-ingredients, 2018.

[3] Kaggle Kernel: TF-IDF with OvR
SVM : What’s Cooking. https:
//www.kaggle.com/shivamb/
tf-idf-with-ovr-svm-what-s-cooking,
2018.

[4] Kaggle Notebooks. https://www.kaggle.
com/c/whats-cooking-kernels-only/
notebooks, 2018.

[5] Kaggle. My SVM Test. https://www.kaggle.
com/dimanpro/my-svm-test, 2018.

[6] Kaggle. This Model is Bland! Simple Logistic Starter.
https://www.kaggle.com/nicapotato/
this-model-is-bland-simple-logistic-starter,
2018.

[7] Kaggle. What’s Cooking?
https://www.kaggle.com/c/
whats-cooking-kernels-only/overview,
2018.

[8] Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S.,
and Dean, J. Distributed representations of words
and phrases and their compositionality. In Advances
in neural information processing systems, pp. 3111–
3119, 2013.

[9] Pedersen, T., Patwardhan, S., and Michelizzi, J. Word-
net:: Similarity: measuring the relatedness of concepts.
In Demonstration papers at HLT-NAACL 2004, pp. 38–
41. Association for Computational Linguistics, 2004.

[10] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel,
V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer,
P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., and Duches-
nay, E. Scikit-learn: Machine learning in Python. Jour-
nal of Machine Learning Research, 12:2825–2830,
2011.

https://www.kaggle.com/josephgpinto/cooking-is-chemistry-really
https://www.kaggle.com/josephgpinto/cooking-is-chemistry-really
https://www.kaggle.com/josephgpinto/cooking-is-chemistry-really
https://www.kaggle.com/rejasupotaro/what-are-ingredients
https://www.kaggle.com/rejasupotaro/what-are-ingredients
https://www.kaggle.com/rejasupotaro/what-are-ingredients
https://www.kaggle.com/shivamb/tf-idf-with-ovr-svm-what-s-cooking
https://www.kaggle.com/shivamb/tf-idf-with-ovr-svm-what-s-cooking
https://www.kaggle.com/shivamb/tf-idf-with-ovr-svm-what-s-cooking
https://www.kaggle.com/c/whats-cooking-kernels-only/notebooks
https://www.kaggle.com/c/whats-cooking-kernels-only/notebooks
https://www.kaggle.com/c/whats-cooking-kernels-only/notebooks
https://www.kaggle.com/dimanpro/my-svm-test
https://www.kaggle.com/dimanpro/my-svm-test
https://www.kaggle.com/nicapotato/this-model-is-bland-simple-logistic-starter
https://www.kaggle.com/nicapotato/this-model-is-bland-simple-logistic-starter
https://www.kaggle.com/c/whats-cooking-kernels-only/overview
https://www.kaggle.com/c/whats-cooking-kernels-only/overview

