

Final Project Report – CIS455/CIS55
Jonah Miller, Simmi Mourya, Sadhana Ravoori, Vikas Shankarathota

 University of Pennsylvania

I. INTRODUCTION
The main goal of this project was to build a scalable
web crawler hosted on Amazon AWS complete with
a crawler, indexer, pagerank, and a front end.

A. Project Goals
1. To have a functioning, reasonable search engine

which retrieved relevant pages.
2. Create meaningful indexes and page rank scores for

all the webpages crawled.

B. High Level Approach
The flow of the system goes as follows:

1) The crawler runs and gets a large relevant corpus of
crawled links. Uses filtering techniques to reject
irrelevant webpages. And stores outputs in S3 and
RDS.

2) The indexer runs on the content of the crawled
webpages to obtain idf and tf scores of the
vocabulary. Outputs are written to S3 and moved to
RDS.

3) The page rank runs to convergence and gets a ranking
for all the crawled webpages to S3 and moved to
RDS.

4) The front end queries the RDS for tf-idf scores and
pagerank and delivers the search result.

C. Division of Labour
1) Jonah Miller: DevOps for S3 access control, EC2,

Developing and Running the optimized crawler
2) Sadhana Ravoori: PageRank, Utility scripts to move

data from S3 to RDS/EMR jobs, DevOps for EMR,
Minor Scaling of indexer

3) Simmi Mourya: Running and scaling Indexer.
DevOps for Gradle, EMR, Hadoop, EMRFS. Minor
Hadoop DevOps for PageRank.

4) Vikas Shankarathota: Front End, RDS management,
running/testing crawls

D. Milestones

1) Optimizing and scaling crawler
2) Developing access policies for S3
3) For indexer, making performance and scalability

evaluation comparisons between HW3 code and
EMR jobs

4) Running EMR jobs like PageRank and Indexer on
Hadoop locally and making EMR compatible JARs

5) Scaling Indexer and PageRank for huge corpuses.
6) Testing the frontend and scoring
7) Develop corpuses of 300 for testing followed by

1000, 5000, 10000, 20000, 50000, 100000.

II. PROJECT ARCHITECTURE

The entire system was hosted on AWS as shown in
the figure below. The system comprised of the following
components:

a) One EC2 instance that hosts the Java Spark Web App
that allows the client to search.

b) One RDS instance which played the role as the data
store for the Search Engine

c) S3 Buckets to store input and outputs for PageRank
and Indexer

d) 2 EMR clusters for running TF and IDF jobs
separately and 1 EMR cluster for running PageRank

e) Set of EC2 instances to run as web crawlers.

The main design choice of the implementation was to have a
single database which stores all the outputs required by the
Web Application to deliver a search result. As a result the
entire system was built around the MySQL RDS instance.
Another design choice was to run 2 separate EMR clusters for
TF and IDF jobs instead of Chaining 2 jobs in a single EMR
job. This helped in developing a stage-wise prototyping for
Indexer, especially while running jobs on huge corpuses.

III. IMPLEMENTATION

Crawler

Design Features:

1) Ran 13 crawlers, each on their own extra large
Ubuntu EC2 instance

2) Downloaded ~25,000 links per hour (all instances)
and a total of 100,000 URLs.

3) Some Seeds were: http://redditlist.com/,
https://www.nytimes.com,
https://www.tripadvisor.com,
https://www.whitehouse.gov, https://www.imdb.com,
https://en.wikipedia.org/wiki/Wikipedia:Contents,
https://www.geeksforgeeks.org/,
https://dmoz-odp.org/,

4) Wrote to S3 buckets and RDS as described above for
use in the pagerank, indexer, and frontend query

5) Singleton access to crawler to access frontier, delay
map, RDS, crawler shutdown, etc.

6) HashMap used to keep track of most recent crawl
time for a host to keep track of crawl delay

7) When crawling a host, store “new Date().getTime() +
crawldelay” in RDS. If the time while crawling that
host again is less than the time in the map, re enqueue
and continue delaying

8) Fast access and occupied little memory
9) Used Apache TIKA for language detection

Topology

a) URLSpout (5 in parallel)
1. Poll frontier (blocking queue) for a URL
2. Send URL to RobotsTxtBolt if it’s non-null
3. RobotsTxtBolt (5 in parallel)
4. Parses URL to get host and port
5. Uses host and post to get robots.txt, writes

data to RDS
6. Set timeout to 2 seconds to reduce latency
7. Send URL to CrawlerBolt

 b) CrawlerBolt (5 in parallel)
1. Send HEAD request to URL using

Http[s]URLConnection
2. Set timeout to 5 seconds to reduce latency
3. Reenqueues URLs to frontier if there is a crawl-delay

or redirect
4. Only accepts HTML pages less than 5MB
5. Does nothing if an error code (4xx, 5xx) is returned
6. Otherwise passes URL to DownloaderBolt

c) DownloaderBolt (5 in parallel)
1. Fetches document with JSoup
2. Set timeout to 5 seconds to reduce latency
3. Extracts outgoing links using hrefs, does some

blacklisting and filtering
4. Saves page text and outgoing links to S3
5. Passes outgoing links to FilterBolt

d) FilterBolt (5 in parallel)
1. Filters out links already seen
2. Databases
3. Wrapper classes are defined to save data to S3 and

RDS
4. Extra steps taken to give owner access to S3 objects

(ACLs)

http://redditlist.com/
https://www.nytimes.com/
https://www.tripadvisor.com/
https://www.whitehouse.gov/
https://www.imdb.com/
https://en.wikipedia.org/wiki/Wikipedia:Contents
https://www.geeksforgeeks.org/
https://dmoz-odp.org/Arts/

Indexer

a) Design Choices:
1) For indexer, made performance and scalability

evaluation comparisons between HW3 code and
EMR MapReduce jobs

2) Decision between Apache Spark and Hadoop
MapReduce on EMR

3) Ran a basic version of Term Frequency (TF)
MapReduce job on Hadoop locally

4) Wrote Gradle scripts to package Hadoop programs
into JARs to run as Custom JAR step job on EMR
clusters

5) Learned EMR and, EMRFS (an HDFS-compliant file
system to access objects in S3) interfacing.

6) Design choice between running TF and IDF jobs in a
chain as a single EMR job or a series of jobs

7) Scaled the bottleneck Mapper of basic TF to
support downloading individual content files directly
inside Mapper. The former method reads lines
directly from the documents. This does not scale
well. To solve this, the key idea was to instead
provide a huge text file with the paths of all the
documents (collected web pages) present in another
S3 bucket. This way, the TF map reads a line which
essentially points to a document in another S3 bucket
and can be directly downloaded during the Map
phase. Now, Pattern Matching for preprocessing can
be done on a file in one go instead of doing it line by
line (first approach). This scales extremely well, the
first approach took ~2 hours for ~8k documents
while the second approach takes 11 minutes for the
same 8k documents. The concept of “accessing
multiple small files is costlier than accessing a small
number of big documents” comes into play here.

b) EMR Configuration: Master:1 m5.xlarge, Core: 2
m5.xlarge (all nodes with two 32GB EBS volumes)

c) TF MapReduce Job:

Map:
Connect to EMRFS by using the following
command:
fs=FileSystem.get(uri,context.getConfiguration());

Read individual file inputs from S3 content bucket by
connecting to hadoop’s FSDataInputStream and
reading the contents of the file via BufferedReader to
a String.
Remove all special, accented characters and digits.
Tokenize into words and after lowecasing and
removing stop words, emit each resulting word

(delimited with corresponding Document ID: SHA
256 Hash of URL) with frequency 1.

Reduce:
Sum up the same word occurrences per document and
emit the Term frequency sum for each
word-document combination.
context.write(delimitedToken,newDoubleWritable(su
m));
This TF score is non-normalized and gets normalized
later while making query and document vectors
during search time. The outputs of reduce are written
to an intermediate S3 bucket which is used by IDF
MapReduce EMR job.

d) IDF MapReduce Job:

Map: Emit the lines of files written by TF job. Minor
operation of separating token from document id.
context.write(new Text(token), new
Text(hashURL+"=="+freq)); where freq is TF score
and hashURL is document ID.

Reduce: A local hashmap is maintained to keep a
counter of document frequency (DF) for each token.
For every occurence of the token the hashmap is the
corresponding hashURL+"=="+freq for that token is
added to the hashmap and a DF counter is
incremented. This DF alongwith total number of
documents is used to calculate unique IDF weights
for each unique token using the following formula.
IDF = Math.log10(1 + (TotalDocs/DF));

This IDF score is then emitted along with the token.
The output of the reduce phase was written to an S3
bucket.

e) Running jobs:
The TF and IDF jobs were run one after the other as
two separate EMR MapReduce jobs. The outputs of
both the reduce phases were written to RDS using
Batch execute scripts for faster updates to the DB.

f) Scoring:
The IDF scores were later used for calculating an IDF
weighted Query vector. The TF scores were used to
calculate an Euclidean normalized document vector.
Since query can be thought of as a small document,
this vector is compared with all the document vectors
corresponding to the documents in which query
words occur.

PageRank

1) We considered two different approaches for the
implementation of the PageRank algorithm as a
mapreduce job.

2) The first implementation involved running the
PageRank job on the HW3 map reduce framework.

3) Since the pagerank algorithm has to be run
iteratively, we tweaked the code to run the job
iteratively. We calculated the number of EOS needed
to determine when the job was completed in the
PrintBolt of the topology.

noOfVotesNeeded =
noOfReduceThreads * noOfWorkers

4) The PrintBolt received this number of end-of-stream
keys, it would issue a GET request to the MasterApp
with the details of the same job.

5) We kept track of the number of iterations in a text file
to which the MasterApp wrote everytime an iteration
was started.

6) This initially worked well with a small set of
webpages but there were a few issues we ran into
with this implementation when we tried to increase
the number of threads in the threadPool and hence
decided against using this implementation.

7) The second implementation was the hadoop job
which ran on an EMR cluster. The map phase of the
PageRank job accepts a string containing the URL,
PageRank score and the outgoing links and computes
the contribution of the URL to the outgoing links.
Score assigned to each of the outgoing link =
(pagerank score)/(number of outlinks). The mapper
phase emits two types of result. The first one is the
outgoing link as the key and the score assigned to it
as the value, the second one is the current url as the
key and all its outgoing links as the value.

8) During the reducing phase, we first determined the
type of result from the mapper and then summed up
all the individual contributions of the different URLs.

9) The reducer emits the results in the same form that
the mapper accepts. The reasoning behind this is that
the PageRank algorithm runs iteratively, and the
output of the previous iteration becomes the input to
the next iteration. Thus the reducer output becomes
the input to the mapper in the next iteration.

10) We used a damping factor of 0.85 to combat page
sinks and get the final PageRank score of the link.
PageRankScore = 0.85*PageRankScore + 0.25.

11) We computed the pagerank scores for the dangling
links in the same way.

12) We run multiple iterations of the algorithm until a
fair degree of convergence. We determined that the
number of iterations taken on a corpus of size
100,000 to be around 30.

Front-End

The front end of the search engine was hosted on an EC2

instance t2x.large which was visible to the world on a public
port. The content was hosted by using the Java Spark server
designed in HW1MS2 during the duration of this course.
Velocity was used to display the dynamically obtained search
results. The results and main search page were constructed
with a combination of CSS, HTML, and Velocity (.vm) files.

The MySQL RDS was hosted on a 2x.large instance and

was the main data storage for the crawl meta-data as well as
the outputs of the indexer and pagerank. The data that was
stored in our RDS instance consisted of: TF scores as postings,
IDF scores, pageranks, allow rules, disallow rules, crawl
delays, and urls crawled.

The web server would query the MySQL RDS for the

values it required to calculate the TF-IDF scores and the
PageRank of the returned documents. Upon a search query,

1) Stopwords were removed and the term frequency of
the words in the query were calculated

2) Common IDFs were pre-cached in memory while any
other IDFs had to be retrieved from the database.
These common words were selected to be cached as
they are often queried for.

3) The Wt,q vector was found for the search query.
4) The TF score and corresponding document was

retrieved from the database if the word occured at
least 3 times.

5) Euclidean Normalization was carried out on the
document vector of the tf scores corresponding to
search terms that appeared in a document.This vector
was multiplied with the Wt,q vector to find the tf-idf
score of the document.

6) The pagerank scores of the top 50 tf-idf scorer
documents was queried from the database.

7) The final rank of the page was calculated by
multiplying the two values.

8) Out of these top 25 pages were listed on the results
page.

Due to the large size of the database, the queries take some
time and hence we had to clean out some of the garbage
values in order to try to speed up the execution. Some of the
things we did was; remove non English words being indexed,
remove words greater than a length of 15, remove words lesser
than a length of 3, return hits if the word appears on the page

at least 3 times, removal of stopwords, lower-casing the
characters, reducing the number of redundant queries etc. One
of the main reasons for this extremely large size was due to
the fact that our Indexer did not use stemming which would
reduce the size, but in turn would yield more inaccurate search
results.

IV. EVALUATION

Crawler

The seed had some effect on the number of links downloaded
per minute by an instance, but overall growth in throughput
for the crawler was linear. This is what I expected; all of the
EC2 instances were the same (XL instances containing 4
vCPUs of 16 GB RAM each), so I knew the crawler would run
at more or less the same speed on each instance. The latency
primarily depended on a) the quality of the server that the
crawler was requesting (bad servers caused slow downloads)
and b) crawl delay. Both of these components depend on the
seed.

Indexer

The Indexer performance increased somewhat linearly with
increasing number of documents. The optimized TF
MapReduce cluster (Master:1 m5.xlarge, Core: 2 m5.xlarge)

finally takes somewhere around ~2 hours to produce TF scores
on 100,000 documents. ~98% time is consumed by the Map
phase. The IDF MapReduce job for 100,000 documents runs
in 6 minutes.

PageRank

We observed that as the number of webpages increased it, the
time taken to run the mapreduce job increased almost linearly.
Initially from 100 to 20000 webpages, we noticed that the
amount of time taken remained almost constant (18-20
minutes). We ran this job on a cluster with 1 master
(m5.xlarge) and 2 workers (m5.xlarge).

Fetching Search Results

The search result query time was a bottleneck in our
approach. Initially we assumed that having a SQL database
would make searching faster, but it turned out to be a very
expensive process. That along with the tradeoff of not using
stemmed indexes in turn for better search results made our
fetch time slightly on the slower side despite best methods to
optimize it.

V. SAMPLE OUTPUTS

VI. CHALLENGES FACED

We faced a myriad of different problems when we were doing
this project. Some of the most notable ones were:

1) Not having access to AWS CLI and IAM to allow
each other’s AWS account to access common
resources

2) Difficulty in dealing with a 3 hour session window
for session-based S3 credentials. Eventually solved
by using anonymous S3 credentials and making
bucket policies public

3) Figuring out how to set S3 object permissions to read
objects placed in bucket by anonymous credential
write, ended up being solved with the Java SDK
CannedAccessControlList class

4) Figuring out the policy for EMR Default Role
insufficient permission EC2 permissions by updating
the role to have full S3 access. Policy attached:
AmazonS3FullAccess

5) Handling edge cases of badly formed URLs while
crawling (e.g. links containing “.” or “..”, non-UTF-8
characters, self links)

6) Size of database to query to generate search result
output which was partially solved with database
optimization and caching.

7) Coming up with a scalable way to move the data
from the S3 bucket to RDS.

VII. CONCLUSION AND FUTURE SCOPE
● You should never ever assume that any content

received from the Internet is well formed (regarding
both pages and URLs)

● The crawler would download a lot of good, relevant,
popular pages, but would download even more
garbage. This was expected, but still unnerving to see
it download so many links from an irrelevant site.

● RDS was a great way to format the data (both
metadata for use by the crawler and indexer), but
made for very slow queries from the frontend, which
were difficult to optimize.

● It’s important to have a well-defined structure of a)
how all of the components will communicate with
one another and b) how the components will
store/retrieve big data sets efficiently

● A corpus of documents is best formed when it was
accumulated in a single crawl. Amalgamating more
than one corpus can create a disjoint corpus and
interfere with pagerank/indexer

● It’s important that everyone is on the same page
about absolutely everything regarding the component
configurations, particularly because the crawler, the
indexer/pagerank, and the frontend execute in series.
Misunderstandings are inconvenient at the least and
catastrophic at worst.

We are happy that at the end of the day we were able to build
a functional basic search engine given the resources. Some
possible advancements we would have loved to have explored
would be handling SEO, crawling for additional file types or
page metadata, and exploring different data storages for faster
querying.

ACKNOWLEDGMENTS
We would like to thank Professor Andreas Haeberlen for

the opportunity to work on this project as a part of the course.
Also, we would like to thank Rishab Jaggi for his inputs and
advice during the project.

